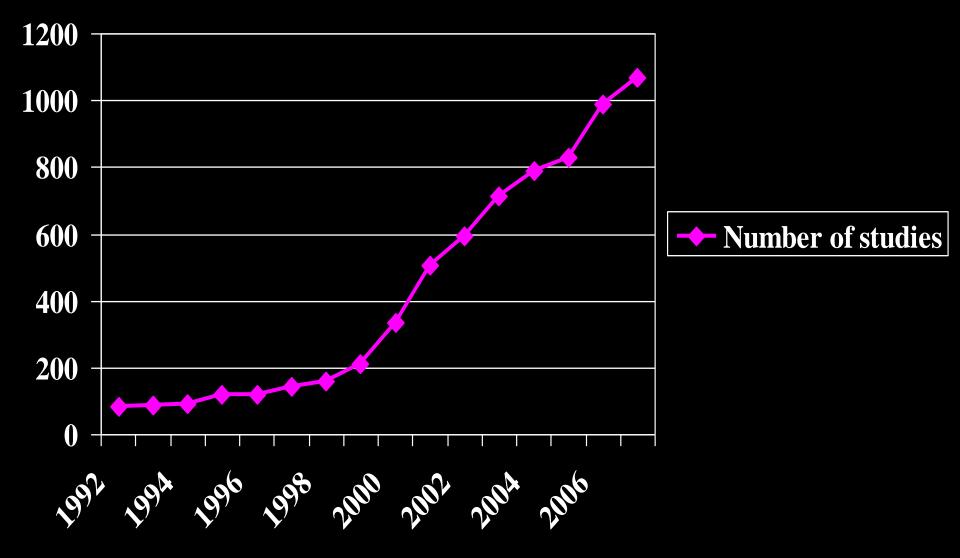
#### Pharmacogenetics of Antidepressant Response in Late Life Depression

### Chi-Un Pae, MD, PhD

Department of Psychiatry The Catholic University of Korea College of Medicine

Department of Psychiatry and Behavioral Sciences Duke University Medical Center


#### **History**

- 510 BC Pythagoras some people develop haemolytic anaemia after eating fava beans
- 1902 Garrod genetic factors direct chemical transformations
- 1932 Snyder phenylthiourea nontasting is inherited as an autosomal recessive trait
- 1957 Motulsky first demonstration of the relationship between adverse drug reaction and genetically determined variation
- 1959 Vogel "pharmacogenetics": the hereditary basis of variability in drug effects
- 1960 Evans speed of INH acetylation is under genetic control
- 1962 Kalow abnormal form of serum cholinesterase causes adverse reactions to succinylcholine
- 1977 Mahgoub polymorphism of CYP2D6 causes adverse effects to debrisoquine

Current trend of pharmacognetics in Psychiatry

## Pharmacogenetic studies

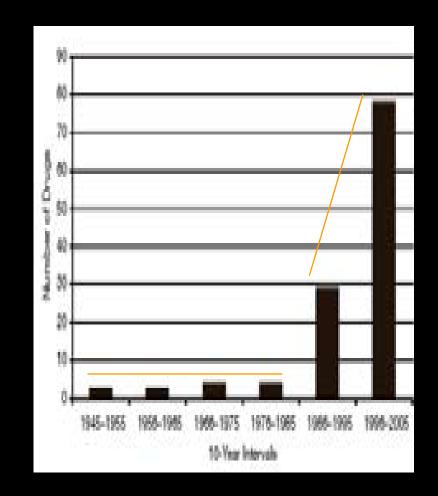
(Medline 1992-2008)



Finally FDA recommend submission of pharmacogentic information on labeling



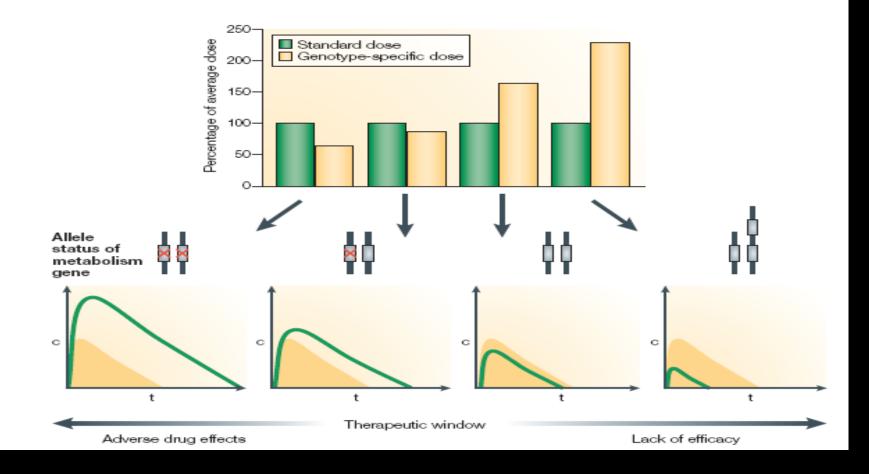
#### FOR IMMEDIATE RELEASE December 12, 2007


Media Inquiries: Sandy Walsh, 301-827-3418 Consumer Inquiries: 888-INFO-FDA

#### Carbamazepine Prescribing Information to Include Recommendation of Genetic Test for Patients with Asian Ancestry

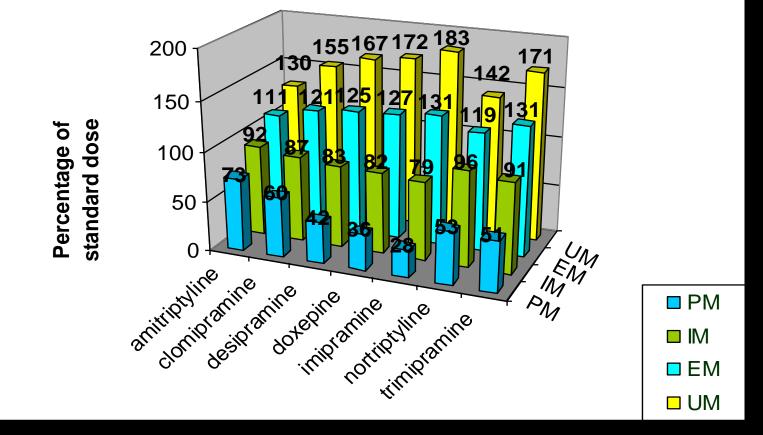
Connection of genetic information with medication use can improve safe use of product

# Number of drug approved with pharmacogentic information


- Pharmacogenomic information is contained in about ten percent of labels for drugs approved by the FDA
- A significant increase of labels containing such information has been observed over the last decade



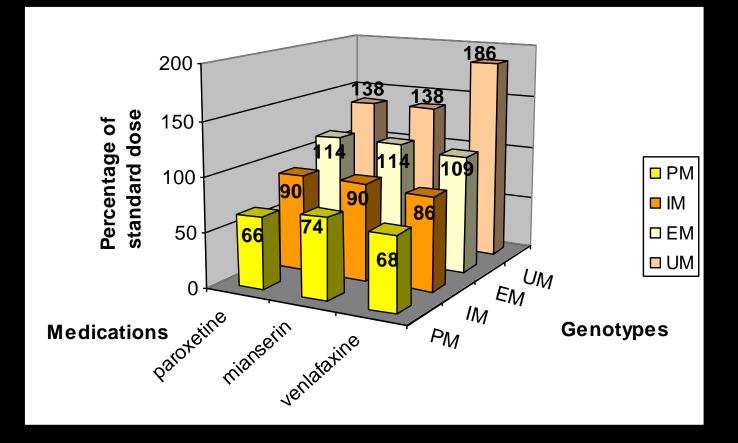
#### Pharmacogenetic Test Information on Drug Labels


- Test required (n=4); Test recommended (n=7) : Information only (more than 150)
- Currently, 4 drugs are required to have pharmacogenetic testing performed before they are prescribed: cetuximab, trastuzumab, maraviroc, and dasatinib
- HLA-B\*1502: Carbamazepine, test recommended
- Urea cycle disorders : Valproic acid, test recommended

## PGx in therapeutic decision-making: Dose adaptation

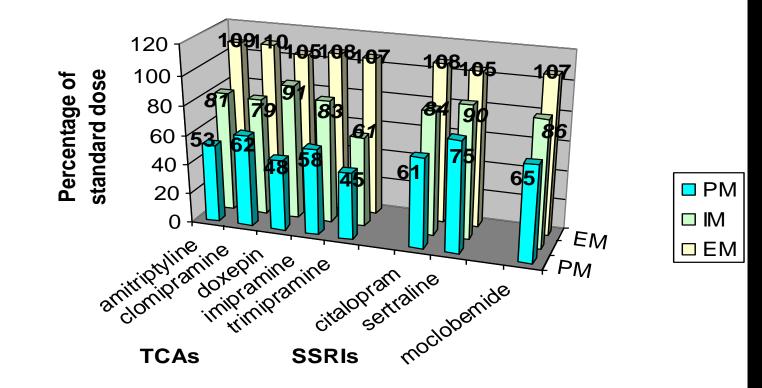


# CYP 2D6 and tricyclic antidepressants

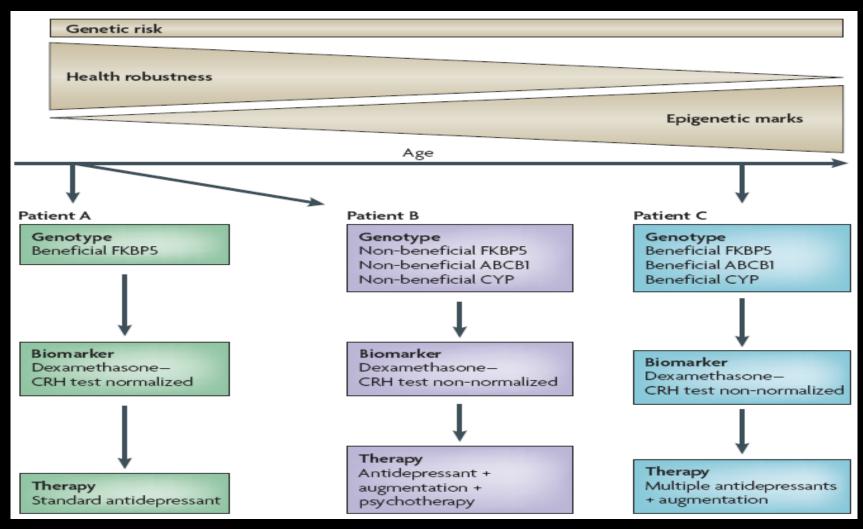

CYP 2D6 Genotypes and dosage recommended



TCA dose adjustments are recommended for 2D6 PM and


UM.

### **CYP 2D6 and other antidepressants**




Kirchheiner et al., 2004 Mol Psychiatry

#### **CYP 2C19 and antidepressants**

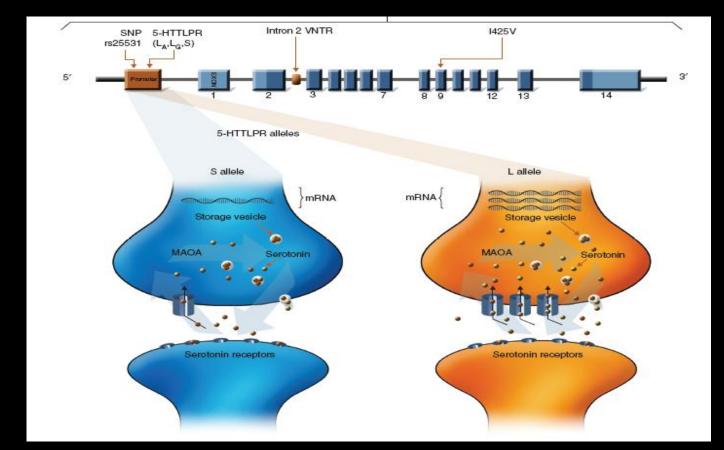


#### Treatment strategies with biomarker and pharmacogenetics



Holsboer, 2008. Neuroscience

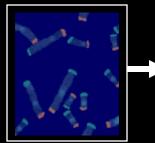
Potential candidate genes relating to antidepressant response

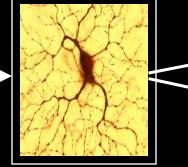

#### **Genes investigated**

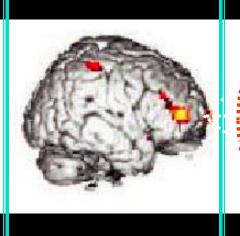
- HTTLPR
- SERT-STin2
- 5HT1A C-1019G
- 5-HT1B
- <u>5HT2A T102C</u>
- 5HT2A G1438A
- 5HT2C
- 5HT6 C267T
- TPH1 A218C
- <u>FKBP5</u>
- NET T-182C
- NET G1287A

- COMT
- MAOA
- DRD2 S311C
- DRD4 VNTR
- ACE I/D polymorphism
- G-protein beta3 C825T
- ADRB1 G1165C
- CRHR1
- NOS C276T
- IL-1beta C511T
- CLOCK

- BDNF
- DTNBP1
- nNOS
- IL-1beta
- APOE
- MDR1P-gp
- <u>GRIK4</u>


#### Serotonin Trasnporter gene (SLC6A4)





• Carriers of short allele have a poor outcome after treatment with SSRIs and a higher rate of adverse effects

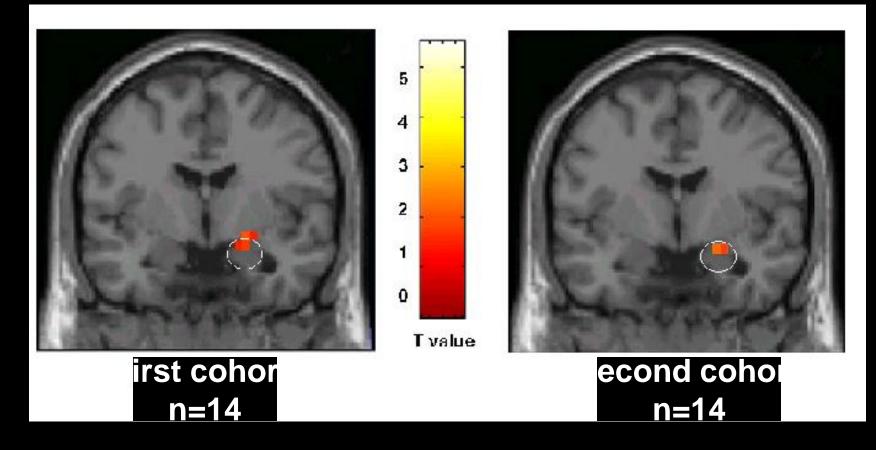
 Antidepressant augmentation strategies with pindolol and lithium was beneficial to carriers of short allele

#### **SLC6A4:** How do we get there from here ?







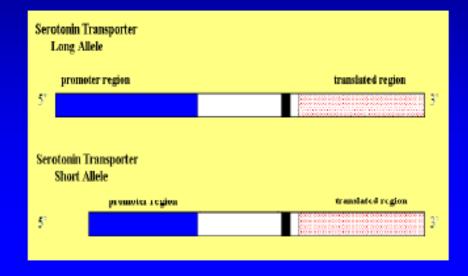

<u>SLC6A4:</u> 5'HTTLPR polymor phism

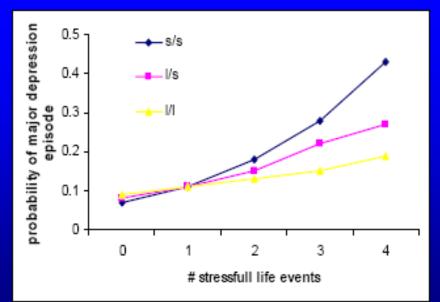
<u>Cells:</u> serotonin mediated excitability

<u>Systems:</u> amygdala processing of fearful stimuli depression, anxiety disorders, neuroticism, response to SSRIs, substance abuse, hallucinations

<u>Behavior:</u> complex functional interactions and emergent phenomena

#### 5'-HTTLPR genotype and fMRI during perceptual processing of fearful faces





s allele carriers show a greater amygdala response than // homozygous individuals

## Genetic x environmental factors

SERT

Stressful life events and the number of short 5-HTTLPR alleles (I/I, I/s, or s/s) predicts occurrence of depression (Caspi et al, 2003)





#### **5-HTTLPR variations.....**

## Broad influence of a single gene on a range of aspects

Alteration of serotonin pathway plasticity

Anatomical change

Stress reactivity

Temperament

Response to antidepressants

Mood disorders

## Meta-analysis for 5-HTTLPR (n=15, 1435 subjects)

#### Remission

| Study<br>or sub-category                                                                             | M and I/s<br>n/N                                             | s/s<br>n/N                                               | OR (fixed)<br>95% Cl | Weight<br>%             | OR (fixed)<br>95% Cl                                                                                                                              |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Smeraldi 1998<br>Zanardi 2000<br>Zanardi 2001<br>Yu 2002<br>Arias 2003<br>Serretti 2004<br>Kato 2006 | 24/38<br>24/42<br>55/68<br>3/49<br>78/104<br>99/167<br>21/31 | 4/15<br>5/16<br>10/14<br>2/72<br>13/27<br>24/53<br>28/49 |                      |                         | 4.71 [1.26, 17.66]<br>2.93 [0.87, 9.95]<br>1.69 [0.46, 6.26]<br>2.28 [0.37, 14.19]<br>3.23 [1.35, 7.76]<br>1.76 [0.94, 3.28]<br>1.58 [0.61, 4.04] |
| Total (95% CI)                                                                                       | 304 / 499                                                    | 86 / 246                                                 | -                    | 100.00                  | 2.21 [1.53, 3.21]                                                                                                                                 |
| Test for overall effect: Z = 4                                                                       | ² = 3.37, df = 6 (P = 0.76), l² = 0%<br>4.19 (P < 0.0001)    |                                                          |                      | ÷                       |                                                                                                                                                   |
| 1                                                                                                    | Favo                                                         | <sup>0.1</sup><br>prable response s/s و                  |                      | 5 10<br>prable response | e I/I and I/s genotype                                                                                                                            |

Serretti A et al. Mol Psychiatry. 2007 Mar;12(3):247-57.

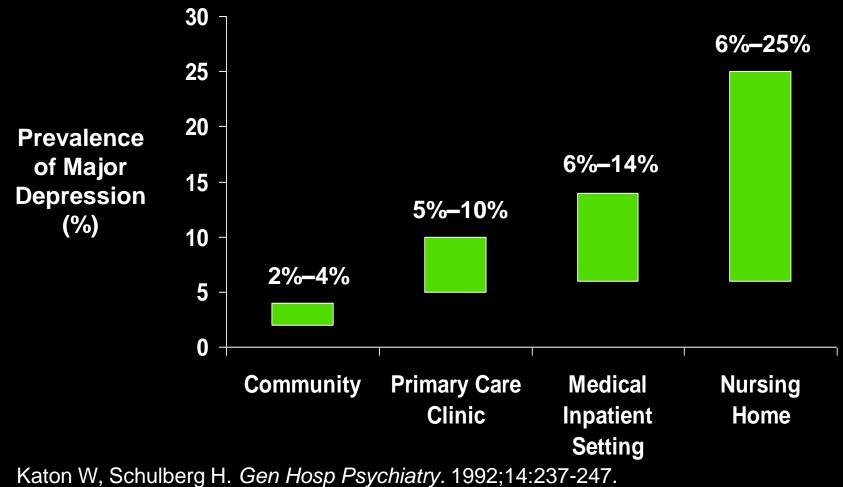
#### Late-Life Depression Demographics

- Community sample >age 65
  - 1% Major depression
  - 2% Dysthymia
  - 4% Adjustment Disorder with depressed mood
  - 15% Sub-syndromal Depression

#### Clinical Features of Late-life Depression

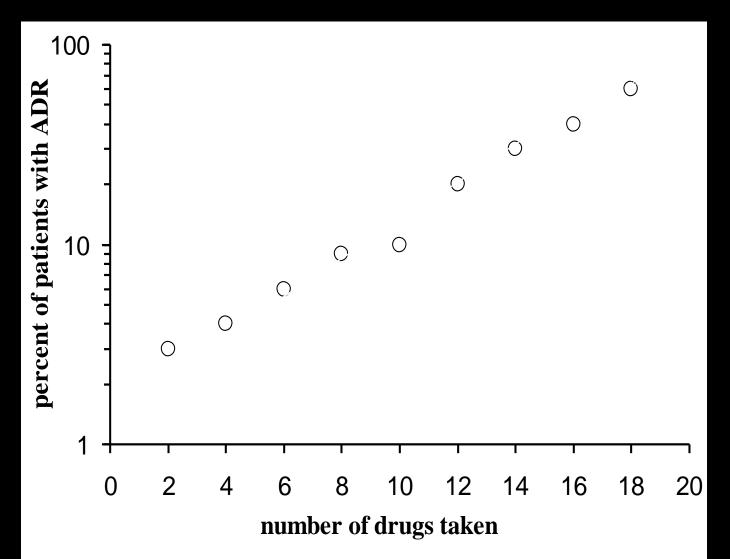
- "Depression" without sadness
- Irritability
- Prominent Anxiety
- Cognitive complaints
- Prominent vague *somatic complaints*
- Unexplained health worries
- Heightened pain complaints
- Loss of interest and pleasure
- Social withdrawal or avoidance of social interactions
- Multiple primary care visits without resolution of the problem
- Unexplained functional decline

#### **Early-onset v. Late-onset**


#### Early-onset

- Index episode in childhood or early adult life
- First degree relatives with depression
- Less physical illness
- More psychiatric comorbidity (SUD; personality disorders)
- Sad mood

#### Late-onset


- Index episode after age 50
- Less genetic predisposition
- Chronic physical illness
- Poorer treatment response with more chronic course
- Increased mortality
- Abnormal brain imaging
- Les psych comorbidity
- Apathy and anhedonia

#### Major Depression Is Associated with Chronic Medical Illness



Rosen J, Mulsant BH, Pollock BG. Nursing Home Med. 1997;5:156-165.

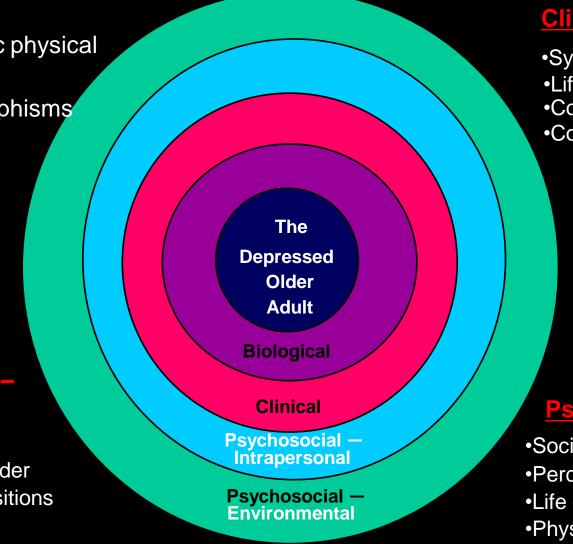
#### **Medication and adverse reaction**



#### **Pharmacokinetic Changes in Aging**

| Parameter             | Change                                                                    | Effect                                               |
|-----------------------|---------------------------------------------------------------------------|------------------------------------------------------|
| Absorption            | Possible ↓                                                                | ↓ Effectiveness                                      |
| Protein binding       | $\downarrow$ if albumin is low                                            | ↑ free drug for protein<br>bound                     |
| Volume of             | ↑ for lipophilic                                                          | ↑ accumulation                                       |
| distribution          | $\downarrow$ for hydrophilic?                                             | ↑ toxicity                                           |
| Hepatic<br>metabolism | ↓ blood flow, 1 <sup>st</sup> pass,<br>demethylation and<br>hydroxylation | ↑ accumulation<br>↑ toxicity<br>↓ prodrug activation |
| Renal excretion       | Often ↓                                                                   | ↓ elimination                                        |

Sheikh and Cassidy, J Anxiety Disorders 2000;14(2):173-90.


#### Nested Potential Predictors of Treatment Response in Late-Life Depression

#### **Biological**

- Nonpsychiatric physical illness
- Gene polymorphisms

<u>Psychosocial</u> – <u>Intrapersonal</u>

DemographicsPersonality disorderTraits and dispositions



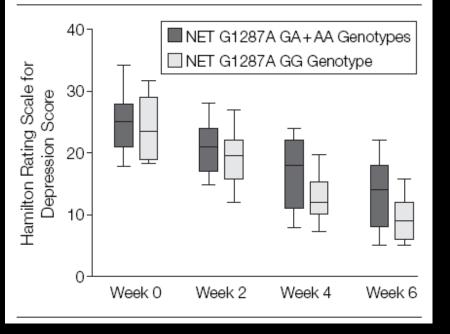
#### <u>Clinical</u>

Symptom severity
Lifetime age of onset
Comorbid anxiety
Cognitive impairment

#### Psychosocial

- Social supports
- •Perceived chronic stress
- •Life events/acute stress
- Physical environment

Individual pharmacogenetic trials Monoamine transporter gene polymorphisms and antidepressant response in koreans with late-life depression (mean age=60)


A 6-week naturalistic treatment study with blinded outcome evaluation of 241 Korean inpatients and outpatients with major depression

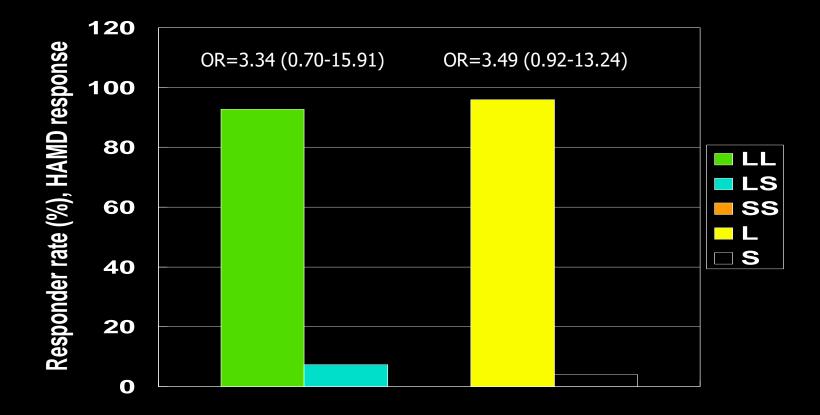
Treatment with an SSRI (fluoxetine or sertraline; n = 136) or an NRI (nortriptyline; n = 105) antidepressant. Adherence was assessed by measuring plasma concentration at 4 weeks

An SSRI and NRI response (defined as > or =50% decrease in Hamilton Rating Scale for Depression score at 6 weeks)

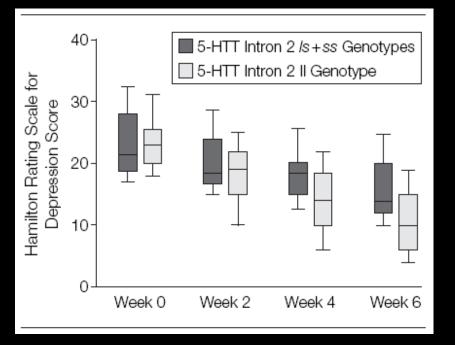
5-HTTLPR, 5-HTT VNTR in intron 2 and NET G1287A in exon 9

#### Chanages in HAMD and responder rate: NET and NRI




|    | Responder<br>(%) | OR and p<br>values    |
|----|------------------|-----------------------|
| GG | 63.6             | 7.54 (2.53-<br>22.49) |
| GA | 29.1             |                       |
| AA | 7.3              |                       |
| G  | 78               | 3.48 (1.67-<br>7.30)  |
| А  | 22               |                       |

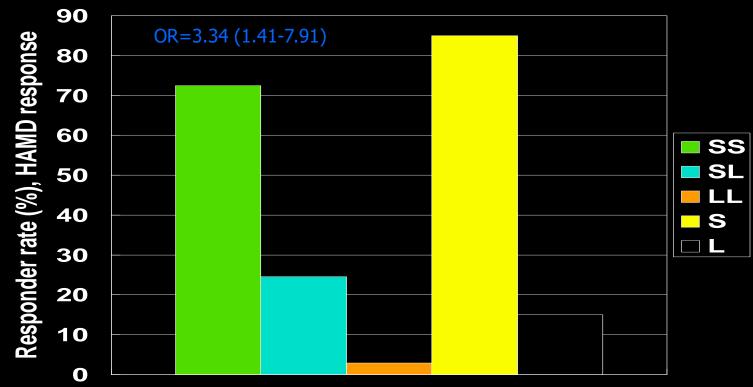
#### **Responder rate: 5-HTTLPR and NRI**


90 Responder rate (%), HAMD response 80 OR=3.73 (1.32-10.53) 70 60 SS SL 50 40 S 30 20 10 0

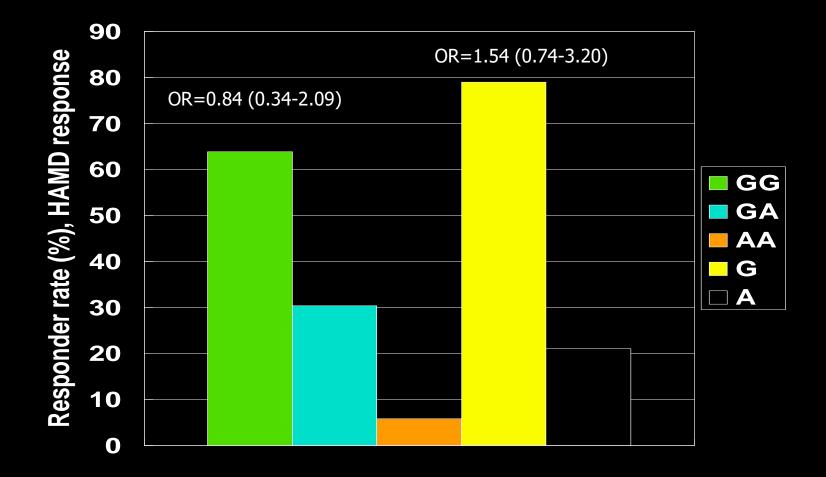
OR=4.85 (2.29-10.27)

## Responder rate: 5-HTT intron and NRI




## Chanages in HAMD and responder rate: 5-HTT intron and SSRI




|    | Responder<br>(%) | OR and p<br>values     |
|----|------------------|------------------------|
| LL | 97.1             | 20.11 (4.27-<br>94.74) |
| LS | 2.9              |                        |
| SS | 0                |                        |
| L  | 99               | 15.87 (3.47-<br>71.43) |
| S  | 1                |                        |

#### **Responder rate: 5-HTTLPR and SSRI**

OR=2.28 (1.17-4.47)



#### **Responder rate: NET and SSRI**



#### Response Rates With Combinations of Monoamine Transporter Polymorphisms

| NET G1287A   | 5-TTLPR   | 5-HTT Intron 2                         | Response<br>Rate,<br>No./Total<br>(%) | P Value*   |
|--------------|-----------|----------------------------------------|---------------------------------------|------------|
|              |           | Norepinephrine Reuptake Inhibitor      |                                       |            |
| GG           | SS        | Any genotype                           | 23/26 (88.5)                          | <.001      |
| GG           | I Carrier | Any genotype                           | 12/16 (75.0)                          | <.008      |
| A carrier    | SS        | Any genotype                           | 15/24 (62.5)                          | <0.02      |
| A carrier    | I Carrier | Any genotype                           | 5/23 (21.7)                           | Comparator |
|              |           | Selective Serotonin Reuptake Inhibitor |                                       |            |
| Any genotype | SS        | II                                     | 48/62 (77.4)                          | Comparator |
| Any genotype | I Carrier | II                                     | 19/35 (54.3)                          | <0.06      |
| Any genotype | SS        | s Allele carriers                      | 2/8 (25.0)                            | <0.01      |
| Any genotype | I Carrier | s Allele carriers                      | 0/14                                  | <.001      |

## STAR\*D, mean age=43

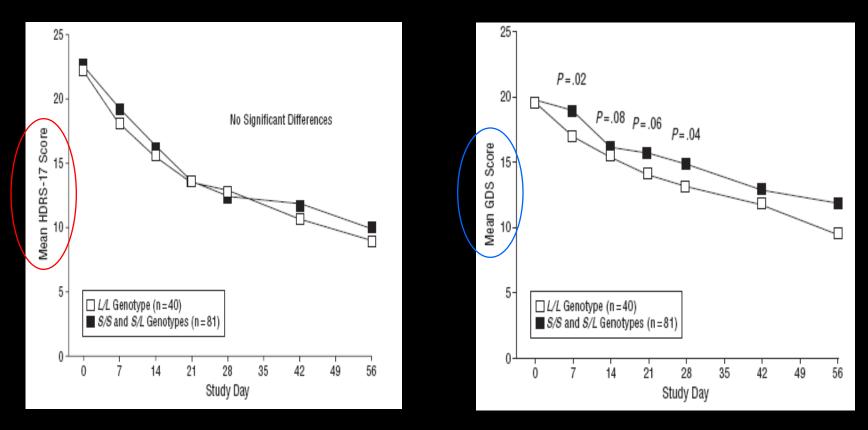
- 1,953 patients with major depressive disorder who were treated with the antidepressant citalopram in the Sequenced Treatment Alternatives for Depression (STAR\*D) study and were prospectively assessed
- 68 candidate genes was genotyped, with 768 singlenucleotide-polymorphism markers chosen to detect common genetic variation
- significant and reproducible association between treatment outcome and a marker in *HTR2A*. *no evidence of association among any of the four genotyped SLC6A4 markers and treatment outcome in these data*

McMahon FJ, et al. Am J Hum Genet. 2006 May;78(5):804-14

Kraft BJ, et al. Biol Psychiatry. 2007 Mar 15;61(6):734-42

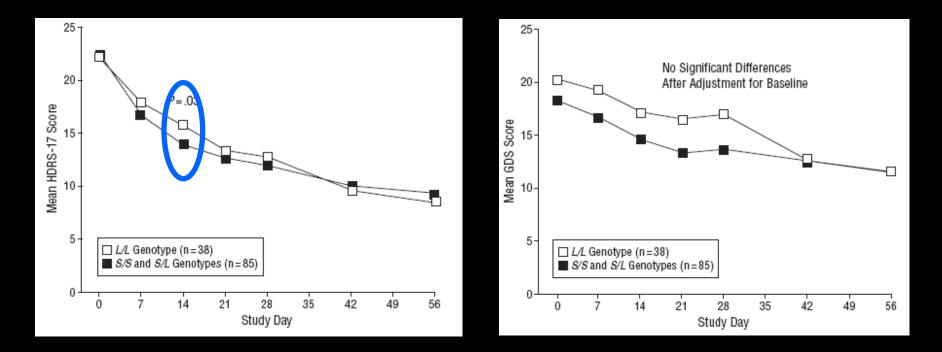
## Association Analysis of Genotyped HTR2A SNPs, Stratified by Race

|                                  |       |            |              | ,     |            |              |       |            |              |  |
|----------------------------------|-------|------------|--------------|-------|------------|--------------|-------|------------|--------------|--|
| l                                |       | All        |              |       | Whiti      | E            | BLACK |            |              |  |
| I                                |       | Р          |              |       | Р          |              |       | Р          |              |  |
| Phenotype and SNP                | Ν     | Allelewise | Genotypewise | n     | Allelewise | Genotypewise | n     | Allelewise | Genotypewise |  |
| Remission:                       |       |            |              |       |            |              |       |            |              |  |
| rs7997012                        | 1,149 | .000024    | .000035      | 911   | .00107     | .00183       | 170   | NS         | NS           |  |
| rs1928040                        | 1,148 | .0446      | .0701        | 910   | .0626      | NS           | 170   | NS         | NS           |  |
| rs6313                           | 1,183 | NS         | NS           | 942   | NS         | NS           | 172   | NS         | NS           |  |
| rs6311                           | 1,180 | NS         | NS           | 939   | NS         | NS           | 172   | .0431      | .0874        |  |
| Response:                        | -     |            |              |       |            |              |       |            |              |  |
| rs7997012                        | 1,329 | .000037    | .000002      | 1,049 | .00183     | .000157      | 199   | NS         | NS           |  |
| rs1928040                        | 1,327 | .0709      | NS           | 1,048 | NS         | NS           | 199   | NS         | NS           |  |
| rs6313                           | 1,372 | NS         | NS           | 1,086 | NS         | NS           | 202   | NS         | NS           |  |
| rs6311                           | 1,371 | NS         | NS           | 1,084 | NS         | NS           | 203   | .0918      | .0149        |  |
| Change in QIDS-C <sub>16</sub> : | -     |            | $\frown$     | ×.    |            | $\frown$     |       |            |              |  |
| rs7997012                        | 1,749 | .000007    | .00000146    | 1,380 | .00123     | .000516      | 261   | NS         | NS           |  |
| rs1928040                        | 1,747 | .0214      | .0072        | 1,378 | .0738      | .0887        | 261   | NS         | NS           |  |
| rs6313                           | 1,802 | NS         | .0878        | 1,425 | NS         | NS           | 264   | NS         | .0353        |  |
| rs6311                           | 1,804 | .0599      | .0494        | 1,426 | NS         | NS           | 265   | .0094      | .0261        |  |


#### McMahon FJ, et al. Am J Hum Genet. 2006 May;78(5):804-14

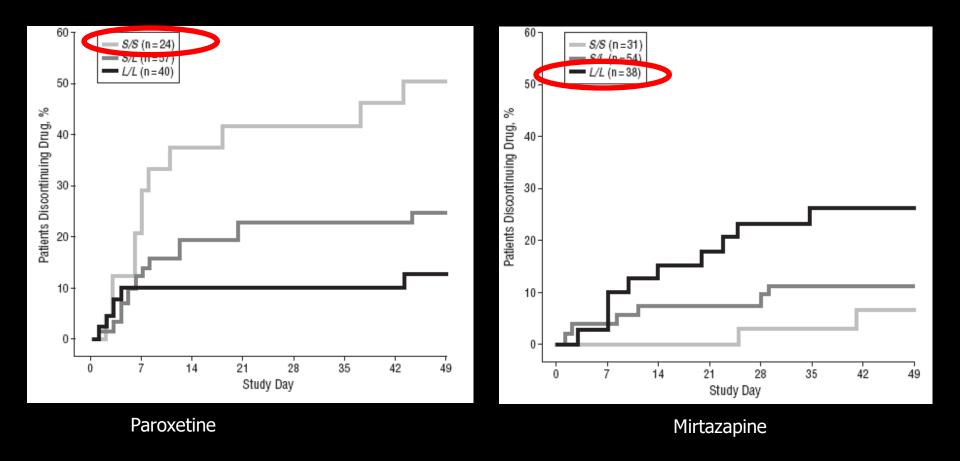
## Association Results for SLC6A4 and Citalopram Response.

|            |              | W   | nite ( <i>n</i> = 799 vs. 509) |                  | African American ( $n = 130$ vs. 121) |      |                |                  |  |  |
|------------|--------------|-----|--------------------------------|------------------|---------------------------------------|------|----------------|------------------|--|--|
|            | MAF          |     | Additive model                 | Dominant OR      | MAF                                   |      | Additive model | Dominant OR      |  |  |
| Marker     | NonResp Resp |     | <i>p</i> value                 | (95% CI)         | NonResp                               | Resp | <i>p</i> value | (95% CI)         |  |  |
| rs25531    | .07          | .08 | .22                            | 1.25 (.90,1.73)  | .25                                   | .27  | .54            | 1.19 (.72,1.96)  |  |  |
| 5-HTTLPR   | .44          | .42 | .27                            | .89 (.70,1.13)   | .20                                   | .22  | .60            | 1.19 (.71,2.01)  |  |  |
| rs25533    | .06          | .06 | .48                            | 1.15 (.80,1.64)  | .07                                   | .13  | .05            | 1.81 (.92,3.56)  |  |  |
| rs2020933  | .05          | .05 | .83                            | 1.06 (.71,1.58)  | .32                                   | .36  | .38            | 1.27 (.74,2.19)  |  |  |
| rs2020934  | .46          | .49 | .10                            | 1.31 (.99,1.72)  | .23                                   | .18  | .28            | .68 (.37,1.25)   |  |  |
| rs16965628 | .06          | .07 | .66                            | 1.10 (.77,1.57)  | .33                                   | .35  | .63            | .96 (.56,1.65)   |  |  |
| rs2066713  | .38          | .42 | .09                            | 1.29 (1.00,1.67) | .26                                   | .29  | .42            | 1.41 (.82,2.41)  |  |  |
| rs6354     | .20          | .20 | .95                            | 1.03 (.81,1.32)  | .34                                   | .34  | .90            | 1.07 (.62,1.82)  |  |  |
| rs140700   | .07          | .10 | .03                            | 1.48 (1.04,2.10) | .04                                   | .09  | .02            | 2.57 (1.07,6.19) |  |  |
| rs140701   | .44          | .42 | .42                            | 1.02 (.80,1.31)  | .27                                   | .28  | .95            | .97 (.56,1.68)   |  |  |
| rs1042173  | .45          | .43 | .28                            | .90 (.70,1.16)   | .23                                   | .22  | .82            | .94 (.55,1.61)   |  |  |


#### Kraft BJ, et al. Biol Psychiatry. 2007 Mar 15;61(6):734-42

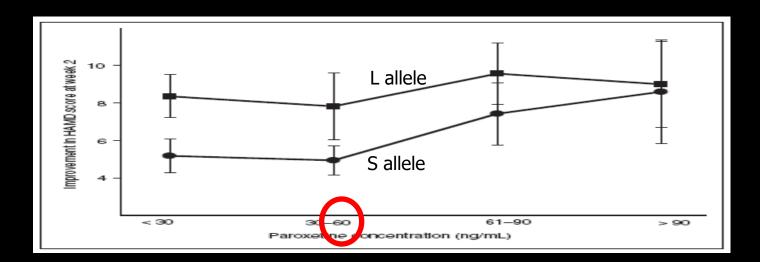
## Effects of the 5HTTLPR polymorphism on the efficacy of paroxetine hydrochloride (mean age=72)




Murphy MG Jr., et al. Arch Gen Psychiatry. 2004 Nov;61(11):1163-9.

## Effects of the 5HTTLPR polymorphism on the efficacy of mirtazapine

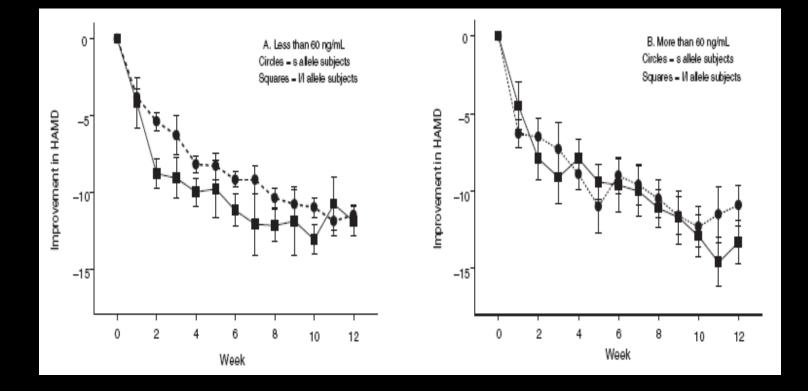



Murphy MG Jr., et al. Arch Gen Psychiatry. 2004 Nov;61(11):1163-9.

## Survival curves showing discontinuations due to adverse events



Murphy MG Jr., et al. Arch Gen Psychiatry. 2004 Nov;61(11):1163-9.


Serotonin transporter genotype interacts with paroxetine plasma levels to influence depression treatment response in geriatric patients



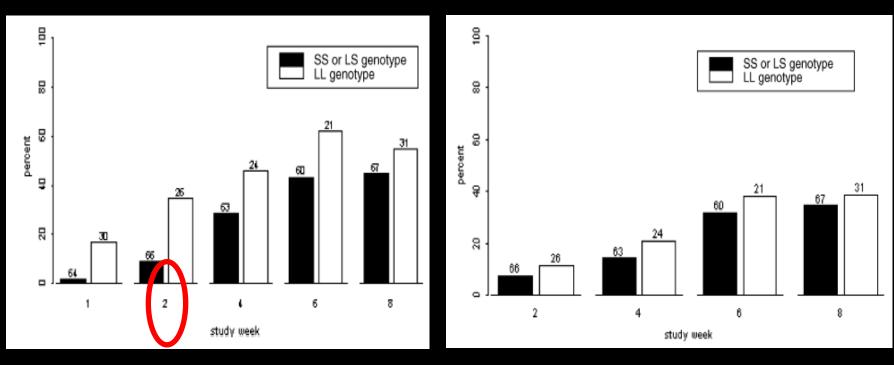
|                             | Period; mean (and SEM) |              |            |              |            |              |            |              |  |
|-----------------------------|------------------------|--------------|------------|--------------|------------|--------------|------------|--------------|--|
|                             | Week 2 or 3            |              | Week 4     |              | We         | eek 6        | Week 10    |              |  |
| Subject group               | Dose, mg               | Level, ng/mL | Dose, mg   | Level, ng/mL | Dose, mg   | Level, ng/mL | Dose, mg   | Level, ng/mL |  |
| l/l allele ( <i>n</i> = 21) | 16.1 (2.0)             | 43.9 (11.9)  | 21.8 (2.5) | 77.9 (7.21)  | 24.5 (2.7) | 89.7 (24.2)  | 30.0 (6.3) | 154.6 (59.5) |  |
| s allele (n = 42)           | 19.2 (1.0)             | 55.6 (7.1)   | 23.5 (1.2) | 100.8 (6.9)  | 26.4 (1.7) | 110.7 (18.4) | 36.7 (3.3) | 185.7 (83.2) |  |
| Low exposure (n = 40)       | 17.7 (1.2)             | 28.8 (3.6)   | 20.9 (1.5) | 46.6 (8.4)   | 23.5 (2.1) | 62.8 (9.9)   | 25.0 (3.8) | 92.4 (18.3)  |  |
| High exposure (n = 23)      | 21.7 (2.1)             | 101.3 (10.1) | 27.0 (2.1) | 165.5 (20.5) | 31.1 (2.6) | 203.9 (21.2) | 30.1 (3.7) | 200.0 (29.6) |  |

#### Lotrich FE et al., J Psychiatry Neurosci. 2008 Mar; 33(2):123-30

## The interaction between genotype and nondichotomized paroxetine levels was significant



Lotrich FE et al., J Psychiatry Neurosci. 2008 Mar; 33(2):123-30

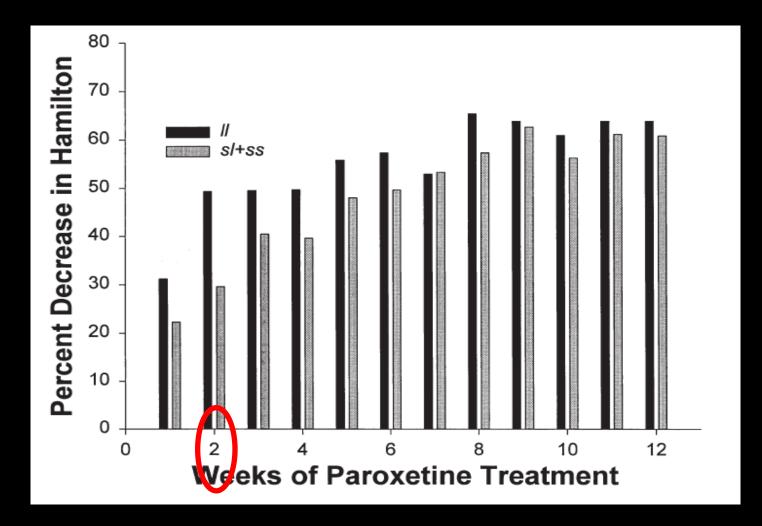

## SERT and Remission: STAR\*D (mean age=43)

|                                     | White non-Hispanic |     |                              | White Hispanic               |           |     |                              | Black                        |           |     |                              |                              |
|-------------------------------------|--------------------|-----|------------------------------|------------------------------|-----------|-----|------------------------------|------------------------------|-----------|-----|------------------------------|------------------------------|
|                                     | Remission          | N   | <i>P-</i> value <sup>a</sup> | <i>P</i> -value <sup>b</sup> | Remission | N   | <i>P-</i> value <sup>a</sup> | <i>P</i> -value <sup>b</sup> | Remission | N   | <i>P</i> -value <sup>a</sup> | <i>P</i> -value <sup>b</sup> |
| Intron 2 VNTR                       |                    |     |                              |                              |           |     |                              |                              |           |     |                              |                              |
| 9/10                                | 52.9%              | 17  | 0.810                        | 1.000                        | 0%        | 1   | 1.000                        | 1.000                        |           |     |                              |                              |
| 9/12                                | 70.6%              | 17  | 0.088                        | 0.353                        | 100%      | 1   | 0.374                        | 1.000                        |           |     |                              |                              |
| 10/10                               | 55.7%              | 158 | 0.070                        | 0.282                        | 29.2%     | 24  | 0.500                        | 1.000                        | 35.3%     | 17  | 1.000                        | 1.000                        |
| 10/12                               | 49.9%              | 469 | 0.610                        | 1.000                        | 38.5%     | 78  | 0.880                        | 1.000                        | 37.9%     | 95  | 1.000                        | 1.000                        |
| 12/12                               | 44.1%              | 81  | 0.017                        | 0 69                         | 38.5%     | 91  | 0.882                        | 1.000                        | 37.9%     | 116 | 1.000                        | 1.000                        |
| Global <i>P</i> -value <sup>c</sup> |                    | U   | .041                         |                              |           | 0.  | .670                         |                              |           | 1.  | .000                         |                              |
| Indel promoter                      |                    |     |                              |                              |           |     |                              |                              |           |     |                              |                              |
| L/L                                 | 53.7%              | 169 | 0.012                        | 0 24                         | 31.7%     | 60  | 0.267                        | 0.533                        | 37.8%     | 143 | 0.780                        | 1.000                        |
| L/S                                 | 45.2%              | 504 | 0.030                        | 0.115                        | 39.8%     | 83  | 0.656                        | 1.000                        | 41.6%     | 77  | 0.567                        | 1.000                        |
| S/S                                 | 46.2%              | 195 | 0.527                        | 1.000                        | 41.5%     | 53  | 0.512                        | 1.000                        | 30%       | 10  | 0.744                        | 1.000                        |
| Global <i>P</i> -value <sup>c</sup> |                    | 0   | .039                         |                              | 0.490     |     |                              |                              | 0.787     |     |                              |                              |
| rs25531                             |                    |     |                              |                              |           |     |                              |                              |           |     |                              |                              |
| A/A                                 | 47.6%              | 925 | 0.134                        | 0.267                        | 38.5%     | 174 | 0.644                        | 1.000                        | 38.9%     | 126 | 0.893                        | 1.000                        |
| A/G                                 | 54.5%              | 145 | 0.129                        | 0.259                        | 35%       | 20  | 1.000                        | 1.000                        | 38.3%     | 94  | 1.000                        | 1.000                        |
| G/G                                 | 50%                | 4   | 1.000                        | 1.000                        | 0%        | 2   | 0.528                        | 1.000                        | 33.3%     | 12  | 1.000                        | 1.000                        |
| Global <i>P</i> -value <sup>c</sup> |                    | 0.  | .287                         |                              |           | 0.  | .752                         |                              |           | 0.  | .975                         |                              |

|           | _     | Haplotype frequer | ncy           |                              |                                |
|-----------|-------|-------------------|---------------|------------------------------|--------------------------------|
| Haplotype | WNH   | WNH non-remitters | WNH remitters | Haplotupe cimulation P-value | Maximum statistic simulation P |
| S-a-12    | 0.330 | 0.363             | 0.297         | 0.0007                       | 0.0031                         |
| L-a-12    | 0.215 | 0.215             | 0.213         | 0.98                         |                                |
| L-g-12    | 0.052 | 0.048             | 0.057         | 0.32                         |                                |
| S-a-10    | 0.085 | 0.074             | 0.097         | 0.23                         |                                |
| L-a-10    | 0.291 | 0.279             | 0.304         | 0.14                         |                                |

#### Mrazek DA et al., Am J Med Genet B Neuropsychiatr Genet. 2009 Apr 5;150B(3):341-51.

The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population (mean age=69)




The percentage of responders (CGI-I=2 or <2)

The percentage of responders (50% or greater reduction in HAM-D)

Durham LK et al., Psychopharmacology (Berl). 2004 Aug;174(4):525-9.

### Serotonin Transporter Promoter Affects Onset of Paroxetine Treatment Response in Late-Life Depression



Pollock BG et al., Neuropsychopharmacology. 2000 Nov;23(5):587-90.

## Limitations to current pharmacogenetics studies

- Generally not multi-gene studies (or studies considering combinations of several genes)
- Little explanation of treatment variance by multiple small effect genes
- Statistically significant results are not necessarily clinically meaningful
- Many studies few results replicated
- Gene-environment, gene-disease, gender, age and other hidden factors not controlled
- Candidate polymorphisms often associated with baseline disease severity
- Small samples
- Sensitivity of rating scales and response definition
- Ethnic difference in SNPs

# Pharmacogenetics: problematic issues...and possible solutions

- Low variance explained by polymorphisms (HTTLPR=2.8%, TPH=2.7%, Gß3=1.2%) → Other variables influence drug response: Life events, social support, temperament, hormones...and should be included in the model! Neural Network?
- Epigenetic factors, CNV, Splicing, Regional expression, gene interactions...should be controlled with multivariate or neural network models.
- Drug response may differ across episodes...longer follow up

## **Now and Outlook**

- Genotyping and SSRI plasma concentrations can be recommended clinically
- How predictive is antidepressants' efficacy and toxicity for clinical endpoints?
- Drug target: transporter, Rs, signaling pathway
- Will genetic testing to predict response and toxicity be feasible and cost-effective?
  - Maybe, but expectations are probably too high
- Large studies with many genes are needed