DEVELOPMENT OF DRUGS FOR ALZHEIMER'S DISEASE

2007 KCGP 추계 학술대회, 서울아산병원 정신과 김성윤

Phase of Clinical Trials

- Phase I trials:
 - Experimental drug or treatment in a small group of people (20-80)
 - Safety, Safe dosage range, Side effects
- Phase II trials:
 - A larger group of people (100-300)
 - Efficacy and further evaluation of the safety
- Phase III trials:
 - Large groups of people (1,000-3,000) to confirm its effectiveness, monito r side effects, compare it to commonly used treatments
- Phase IV trials:
 - Post marketing studies
 - Additional information: drug's risks, benefits, and optimal use

신약개발과 임상시험

Drug Approval Process

THE DRUG DISCOVERY, DEVELOPMENT AND APPROVAL PROCESS

It takes 10-15 years on average for an experimental drug to travel from the lab to U.S. patients. Only five in 5,000 compounds that enter preclinical testing make it to human testing. One of these five tested in people is approved.

				Clinical Trials		-		
	Discovery/ Preclinical Testing		Phase I	Phase II	Phase III	-	FDA	Phase IV
Years	6.5		1.5	2	3.5		1.5	
Test Population	Laboratory and animal studies	FDA	20 to 100 healthy volunteers	100 to 500 patient volunteers	1,000 to 5,000 patient volunteers	v at FDA	Review	Additional
Purpose	Assess safety, biological activity and formulations	File IND at	Determine safety and dosage	Evaluate effectiveness, look for side effects	Confirm effectiveness, monitor adverse reactions from long-term use	File NDA/BLA	process/ approval	post- marketing testing required by FDA
Success Rate	5,000 compounds evaluated			5 enter trials			1 approved	

2005 Medicine in Development, PhRMA

R&D Expenditure and Trials

 Company	R&D Spend (2005 \$milliions)	Recruiting trials
 Pfizer Inc.	\$7,256	
 		311
 GlaxoSmithKline Plc.	\$5,495	350
 Sanofi-Aventis	\$4,949	246
Novartis	\$4,372	355
Roche	\$4,001	160
Merck & Co.	\$3,848	143
AstraZeneca Plc.	\$3,314	194
Eli Lilly and Co.	\$2,940	209
Wyeth	\$2,722	174
Bristol-Myers Squibb Co.	\$2,513	193
Amgen Inc.	\$2,302	90
Schering-Plough Corp.	\$1,762	62
Boehringer Ingelheim GmbH	\$1,544	69
Takeda Chemical Industries Ltd.	\$1,507	22
Daiichi-Sankyo	\$1,340	24
Astellas	\$1,291	37
Abbott Laboratories	\$1,140	67
Schering AG	\$1,019	23

Source: 2005 Clinicaltrials.gov

Donepezil: RCT

A 24-week, double-blind, placebocontrolled trial of donepezil in patients with Alzheimer's disease

S.L. Rogers, PhD; M.R. Farlow, MD; R.S. Doody, MD, PhD; R. Mohs, PhD; L.T. Friedhoff, MD, PhD; and the Donepezil Study Group*

Article abstract—The efficacy and safety of donepezil as a treatment for patients with mild to moderate Alzheimer's disease (AD) was investigated in a multicenter, double-blind study. Patients were randomly assigned to treatment with placebo (n = 162), 5 mg/d donepezil (n = 154), or 10 mg/d donepezil (n = 157) for 24 weeks followed by a 6-week, single-blind placebo washout. The primary efficacy measures were the cognitive portion of the Alzheimer's Disease Assessment Scale (ADAS-cog) and the Clinician's Interview Based Assessment of Change-Plus (CIBIC plus), with the Mini-Mental State Examination (MMSE), Clinical Dementia Rating Scale-Sum of the Boxes (CDR-SB), and patient rated Quality of Life (QoL) used as secondary measures. Cognitive function, as measured by the ADAS-cog, was significantly improved in the 5- and 10-mg/d donepezil groups as compared with the placebo group at weeks 12, 18, and 24. Clinician's global ratings on the CIBIC plus also improved in both the 5- and 10-mg/d donepezil groups relative to placebo. At the end of the 6-week placebo washout phase, ADAS-cog scores and CIBIC plus ratings were not significantly different for the three groups. Significant treatment benefits were also observed consistently in both the 5- and 10-mg/d groups on the MMSE and the CDR-SB, but there was no consistent effect on the patient-rated QoL. Cholinergic side effects (primarily diarrhea, nausea, and vomiting) were reported more often in the 10-mg/d group than either the 5-mg/d or placebo groups. Side effects were transient and generally mild in severity. These data indicate that donepezil is a well-tolerated drug that improves cognition and global function in patients with mild to moderate AD.

NEUROLOGY 1998;50:136–145

Rogers et al., 1998, Neurology

Donepezil: RCT

- Multicenter, double-blind study on mild to moderate AD subjects
- 5mg (154), 10mg (157), placebo (162)
- 24 weeks
- Primary:
 - ADAS-cog, CIBIC-Plus
- Secondary:
 - MMSE, CDR-SB, QoL (Pt)
- Result:
 - Cognition, CIBIC-Plus improved in 12, 18, 24 week (5, 10mg)
 - MMSE, CDR-SB also improved, but not on QoL

Rogers et al., 1998, Neurology

Papers

Efficacy and safety of rivastigmine in patients with Alzheimer's disease: international randomised controlled trial

Michael Rösler, Ravi Anand, Ana Cicin-Sain, Serge Gauthier, Yves Agid, Peter Dal-Bianco, Hannes B Stähelin, Richard Hartman, Marguirguis Gharabawi on behalf of the B303 Exelon Study Group

Abstract

Objectives To assess the effects of rivastigmine on the core domains of Alzheimer's disease.

Design Prospective, randomised, multicentre, double blind, placebo controlled, parallel group trial. Patients received either placebo, 1-4 mg/day (lower dose) rivastigmine, or 6-12 mg/day (higher dose) rivastigmine. Doses were increased in one of two fixed dose ranges (1-4 mg/day or 6-12 mg/day) over the first 12 weeks with a subsequent assessment period of 14 weeks.

Setting 45 centres in Europe and North America. Participants 725 patients with mild to moderately severe probable Alzheimer's disease diagnosed according to the *Diagnostic and Statistical Manual of Mental Disorders*, fourth edition, and the criteria of the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association. disease. This is the first treatment to show compelling evidence of efficacy in a predominantly European population.

Introduction

One of the most successful treatments for Alzheimer's disease has been the use of acetylcholinesterase inhibitors to enhance surviving cholinergic neurotransmission by inhibiting the breakdown of released acetylcholine. The first of these drugs approved for treating Alzheimer's disease, tacrine, is effective but can cause an increase in liver enzyme concentrations; in some countries, such as in the United Kingdom, this has prevented it from being licensed.¹⁻³ More recently, a second acetylcholinesterase inhibitor, donepezil (a piperidine derivative) has become available.^{4 5} Clinical trials have reported benefits on cognition and global evaluations.^{4 5} Rivastigmine is a novel, "pseudo-irreversible," brain selective inhibitor of acetylcholinesterases, the metabolism of which is almost totally

Sektion Gerontopsychiatric, Psychiatrische Universitätsklinik, Fuchsleinstrasse 15, D 97080 Würzburg, Germany Michael Rösler, *head*

CNS Clinical Research, Novartis Pharmaceuticals, 59 Route 10, East Hanover, NJ 07936, USA Ravi Anand, *director* Richard Hartman, *dinical research manager* Marguirguis Gharabawi, *director*

Novartis Pharma, Lichstrasse 35, 4002 Basel, Switzerland

- Prospective, randomized, multicenter, double-blind, placebo-controlled, parallel group trial
- Placebo, 1~4mg/day, 6~12mg/day: 12 + 14 weeks
- 45 centers in Europe and North America
- 725 subjects with mild to moderate AD by DSM-IV and NINCDS-ADRDA
- Primary:
 - ADAS-cog, CIBIC-plus, PDS (Progressive deterioration scale)

Table 1 Instruments used to evaluate the efficacy of rivastigmine in treating Alzheimer's disease

Instrument	Symptoms or domains assessed	Source of information	Range of scale and interpretation
Alzheimer's disease assessment scale (cognitive subscale)	Cognition (memory, language, orientation, praxis)	Patient	0-70 points 0=no errors (rarely achieved, even in general population) 70=severe impairment
Clinician interview based impression of change scale (incorporating caregiver information)	Global assessment of behaviour, general psychopathology, cognition, and activities of daily living	Patient and caregiver during interview with clinician*	 1-7 points 1, 2, 3=marked, moderate, or minimal improvement 4=no change 5, 6, 7=minimal, moderate, or marked deterioration
Progressive deterioration scale	Activities of daily living (dressing and eating independently, social interaction, participation in housework and hobbies, awareness of time, handling of financial matters)	Caregiver	29 items Scores range from 0 to 100

*Clinicians had no access to data on efficacy or safety.

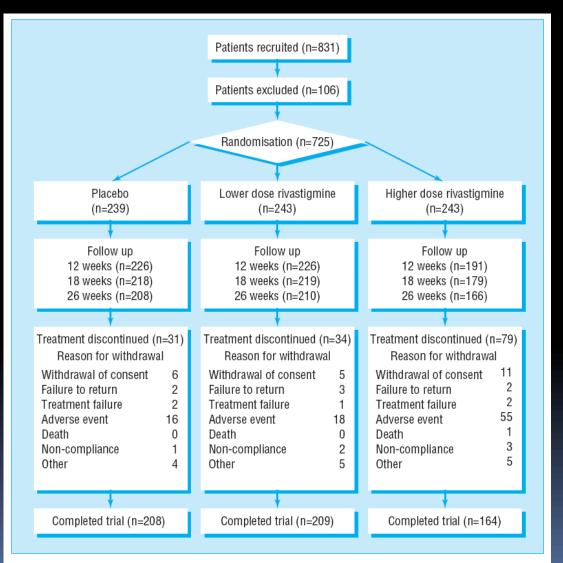


Fig 1 Outcome of allocation to treatment and reasons for withdrawal from the study

Galantamine: RCT

Galantamine: a randomized, double-blind, dose comparison in patients with Alzheimer's disease

D. Wilkinson¹* and J. Murray² in collaboration with the Galantamine Research Group*[†]

¹Consultant in Old Age Psychiatry, Thornhill Research Unit, Moorgreen Hospital, Southampton ²Business Development Director, Shire Pharmaceuticals, Andover, UK

SUMMARY

Objectives To investigate whether Galantamine significantly improves the core symptoms of Alzheimer's disease (AD) **Background** Galantamine is a reversible, competitive, selective inhibitor of acetylcholinesterase (AChE) that also allosterically modulates nicotinic acetylcholine receptors. This dual mechanism of action provided the rationale for a phase II trial of galantamine in AD.

Method A multicentre, randomized, parallel, double-blind, placebo-controlled trial was carried out to evaluate the efficacy and tolerability of galantamine 18, 24 and 36 mg/day administered for 3 months in 285 patients with mild-to-moderate probable AD. The primary outcome measure was the Alzheimer's Disease Assessment Scale cognitive subscale (ADAS-cog); secondary outcome measures were the Clinical Global Impression of Change (CGIC) and the Progressive Deterioration Scale (PDS).

Results Patients treated with galantamine 24 mg/day had a significantly better outcome than placebo on ADAS-cog; the treatment difference was 3 points on the intention-to-treat (ITT) analysis (p=0.01) and 4.2 points on per protocol analysis (p=0.001). Per protocol analysis showed that galantamine had a significantly better outcome than placebo on PDS (24-mg/ day dose, p < 0.05) and CGIC (36-mg/day dose, p < 0.05). Galantamine was well tolerated at the lower doses of 18 and 24 mg/day where it produced mild, transient effects typical of cholinomimetic agents.

Conclusion This study shows that, relative to placebo, galantamine significantly improves the core symptoms of Alzheimer's disease. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS - Galantamine; dementia; Alzheimer's disease; acetylcholinesterase inhibitor

Wilkinson et al., 2001, Int J Geriat Psychiatry

Galantamine: RCT

- Phase II trial of galantamine in AD
- Multicenter, randomized, parallel, double-blind, placebo-controlled RCT
- 285 subjects, 3 months, 18, 24, 36 mg/d
- Primary:
 - ADAS-cog
- Secondary:
 - CGIC and PDS (progressive deterioration scale)

Wilkinson et al., 2001, Int J Geriat Psychiatry

Galantamine: RCT

Assessment	Placebo	group	Galant 18 mg/da			tamine ay group	Galantamine 36mg/day group						
ADAS-cog: mean (SEM) change from baseline	ITT (LOCF) (n=82) 1.6 (0.7)	PP (n=53) 2.3 (0.9)	ITT (LOCF) (n=81) -0.1 (0.7)	PP (n = 62) -0.8* (0.8)	ITT (LOCF) (n=55) -1.4** (0.9)	$ PP (n = 44) -1.9^{**} (1.0) $	ITT (LOCF) (n=51) -0.7† (0.7)	PP (n=29) -1.8** (0.9)					
CGIC: n (%)	(<i>n</i> =83)	(<i>n</i> =74)	(<i>n</i> =79)	(<i>n</i> =61)	(<i>n</i> =53)	(<i>n</i> =44)	(<i>n</i> =47)	(<i>n</i> =29)					
Much improved	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	2 (3.8)	2 (4.5)	0 (0.0)	0 (0.0)					
Improved	23 (31.3)	25 (33.8)	29 (36.7)	27 (44.3)	13 (24.5)	13 (29.5)	15 (31.9)	14 (48.3)					
No change	34 (41.0)	28 (37.8)	38 (48.1)	24 (39.3)	29 (54.7)	21 (47.7)	26 (55.3)	13 (44.8)					
Worse	23 (27.7)	21 (28.4)	12 (15.2)	10 (16.4)	9 (17.0)	8 (18.2)	6 (12.8)	2 (6.9)					
Much worse	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)					
PDS-1: n (%)	(n = 87)	(n = 74)	(<i>n</i> =88)	(n = 62)	(<i>n</i> =56)	(<i>n</i> =44)	(<i>n</i> =54)	(n = 29)					
Much worse	7 (8.0)	3 (4.1)	4 (4.5)	1 (1.6)	1 (1.8)	0 (0.0)	1 (1.9)	1 (3.4)					
Worse	15 (17.2)	13 (17.6)	12 (13.6)	9 (14.5)	5 (8.9)	2 (4.5)	11 (20.3)	5 (17.2)					
No change	57 (65.5)	50 (67.6)	61 (69.3)	43 (69.4)	42 (75.0)	34 (77.2)	* 38 (70.4)	19 (65.5)					
Improved	8 (9.2)	8 (10.8)	9 (10.2)	7 (11.3)	7 (12.5)	7 (15.9)	4 (7.4)	4 (13.8)					
Much improved	0 (0.0)	0 (0.0)	2 (2.3)	2 (3.2)	1 (1.8)	1 (2.3)	0 (0.0)	0 (0.0)					

Table 2. Efficacy outcomes after 12 weeks

SEM, standard error of mean; ITT, intention-to-treat analysis; LOCF, last-observation-carried-forward method; PP, per protocol analysis; ADAS-cog, Alzheimer's Disease Assessment Scale cognitive subscale; CGIC, Clinical Global Impression of Change; PDS-1, Progressive Deterioration Scale. *p < 0.05, **p < 0.01, [†]p = 0.08 versus placebo.

Wilkinson et al., 2001, Int J Geriat Psychiatry

Memantine over Donepezil: RCT

Memantine Treatment in Patients With Moderate to Severe Alzheimer Disease Already Receiving Donepezil A Randomized Controlled Trial

Pierre N. Tariot, MD
Martin R. Farlow, MD
George T. Grossberg, MD
Stephen M. Graham, PhD
Scott McDonald, PhD
Ivan Gergel, MD
for the Memantine Study Group

LZHEIMER DISEASE (AD) IS A neurodegenerative disorder characterized by cognitive decline, impaired performance **Context** Memantine is a low- to moderate-affinity, uncompetitive *N*-methyl-D-aspartate receptor antagonist. Controlled trials have demonstrated the safety and efficacy of memantine monotherapy for patients with moderate to severe Alzheimer disease (AD) but no controlled trials of memantine in patients receiving a cholinesterase inhibitor have been performed.

Objective To compare the efficacy and safety of memantine vs placebo in patients with moderate to severe AD already receiving stable treatment with donepezil.

Design, Setting, and Participants A randomized, double-blind, placebocontrolled clinical trial of 404 patients with moderate to severe AD and Mini-Mental State Examination scores of 5 to 14, who received stable doses of donepezil, conducted at 37 US sites between June 11, 2001, and June 3, 2002. A total of 322 patients (80%) completed the trial.

Interventions Participants were randomized to receive memantine (starting dose 5 mg/d, increased to 20 mg/d, n=203) or placebo (n=201) for 24 weeks.

Tariot et al., 2004, JAMA

Memantine over Donepezil: RCT

- Compare the efficacy and safety of m. vs. placebo in mod. To severe AD on donepezil.
- Randomized, double-blind, placebo
- Moderate to severe AD (404; 5~14/MMSE)
- Primary:
 - SIB (Severe Impairment Battery), ADCS-ADL19
- Secondary:
 - CIBIC-Plus, NPI, BRS for Geriatric Patients (selected)

Tariot et al., 2004, JAMA

Memantine over Donepezil: RCT

Table 2. Efficacy Outcomes at Week 24 (Observed Case) and at End Point (LOCF)*

2017 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -				Leas	st Squares Mea	an Score (S	E)										
	[Change From Baseline													
		Bas	eline	End	d Point LOCF†		Week 24 Observed Case										
Outcome Measure	I	Placebo	Memantine	Placebo	Memantine	P Value	Placebo	Memantine	P Value								
SIB		80.0 (1.13)	78.0 (1.11)	-2.5 (0.69)	0.9 (0.67)	<.001	-2.4 (0.74)	1.0 (0.70)	<.001								
No. of patients		197	198	196	198		153	171									
ADCS-ADL19		35.8 (0.74)	35.5 (0.73)	-3.4 (0.51)	-2.0 (0.50)	.03	-3.3 (0.55)	–1.7 (0.51)	.02								
No. of patients		197	198	197	198		152	172									
CIBIC-Plus‡	sm)	NA	NA	4.66 (0.075)	4.41 (0.074)	.03	4.64 (0.087)	4.38 (0.081)	.03								
No. of patients	÷	197	198	196	198		152	172									
NPI		13.4 (1.08)	13.4 (1.07)	3.7 (0.99)	-0.1 (0.98)	.002	2.9 (1.06)	-0.5 (0.99)	.01								
No. of patients		197	198	189	193		152	171	2								
BGP Care Dependency Subscale		9.8 (0.46)	9.5 (0.45)	2.3 (0.38)	0.8 (0.37)	.001	2.2 (0.40)	0.6 (0.37)	.001								
No. of patients		196§	198	179	185		151	172									

Abbreviations: ADCS-ADL₁₉, 19-item Alzheimer Disease Cooperative Study–Activities of Daily Living Inventory; BGP, Behavioral Rating Scale for Geriatric Patients; CIBIC-Plus, Clinician's Interview-Based Impression of Change Plus Caregiver Input; LOCF, last observation carried forward; NA, not applicable; NPI, Neuropsychiatric Inventory; SIB, Severe Impairment Battery.

*SIB range of possible scores, 0 to 100; higher score indicates better function. ADCS-ADL₁₉ range of possible scores, 0 to 54; higher score indicates better function. CIBIC-Plus was defined as a change score, therefore baseline values are not applicable; range of possible scores, 1 (marked improvement) to 7 (marked worsening). NPI range of possible scores, 0 to 144; higher scores indicate worse symptoms. BGP range of possible scores, 0 to 70; higher scores indicate worse function.

†For the end point LOCF approach, only postbaseline assessments were carried forward.

‡Arithmetic mean.

§One patient had an incomplete BGP baseline assessment and was not included.

Primary Outcome in Major Studies

Drug	Study				1 c	outc	ome m	easu	irem	ient														
					Co	Cognition ADAS-cog		Global									nctio	on					BPS	
	author	year	title	journal	AD			CIBIC-plus							DA	DAD						BGÞ	su	
						MN	A SE		CIB	IS							SK	f						
							CASI			CIB	I							AD	L/tir					
											GBS	5							AD	CS-/	ADLs	ev		
														nysicia	an					AD	CS-A	DL/	19	
													PDS								SIB			
														scàg										
														IQ	COD	E								
donepezil			"Efficacy and tolerabilit		0			0	0															
donepezil	Burns, A., M	1999	"The effects of donepe	Demer	0			0																
donepezil	Evans, M., A	2000	"Sustained cognitive in	Int J G	0	0																		
donepezil	Greenberg, §		"Donepezil therapy in		0																			
donepezil	Pratt, R. D.	2002	"Patient populations in	J Neur	0			0	0															
donepezil	Rogers, S. L.	1998	"A 24-week, double-bl	Neuro	0			0																
donepezil	Wilkinson, D	2003	"Donepezil in vascular	Neuro	0			0	0															
donepezil	Winblad, B.,	2001	"A 1-year, randomized	Neuro							0													
galantamine	Blesa, R., M.	2003	"Galantamine provides	Demer	0	0										0								
galantamine	Bullock, R., T	2004	"Management of patie	Demer	0																			
galantamine	Coyle, J. and	2001	"Galantamine, a cholin	Biol Ps	0																			
galantamine	Erkinjuntti, T	2003	"An open-label extens	Clin Tł	0																			
galantamine	Lyketsos, C.	2004	"Long-term outcomes	Am J 🤇	0																			
galantamine	Marcusson, .	2003	"Galantamine demonst	Alzheii	0			0																
galantamine	Wilkinson, D	2001	"Galantamine: a rando	Int J G	0																			
memantine	Ditzler, K.	1991	"Efficacy and tolerabilit	Arznei									(C			0	0						
memantine	Gortelmeyer,	1992	"Memantine in the trea	Arznei							0		(C										
memantine	Orgogozo, J	2002	"Efficacy and safety of	Stroke	0			0																
memantine	Reisberg, B.,	2003	"Memantine in modera	N Eng				0											0					
memantine	Tariot, P. N.,	2004	"Memantine treatment	JAMA																0	0			
memantine	Winblad, B. (1999	"Memantine in severe	Int J G								0										(0	
rivastigmine	Farlow, M., F	2000	"A 52-week study of th	Eur Ne	0																			
rivastigmine	Kumar, V., R	2000	"An efficacy and safety	Eur J I	0			0					0											
rivastigmine	Rosler, M., R	1999	"Efficacy and safety of	BMJ 3	0			0					0											

Secondary Outcome in Major Studies

Drug	Study						ne measi																						
						Cognition		Global								Function							Car		PSD				
	author	year	title	journal			g/13	(CIBIC-					ADS						DAS-cog/13			Rati			r stres	S		
						MMS				R-SB					Fu			ssessmer	ent Stagin DAD					Behave-AD					
						V	erbal reca									IDD						S/ADL			NP			· · · ·	Subscale
							verbal				ccic						ADFA				S	IB							(Arnold/Ferm)
							Тар	oping a	and Tra	ace te	sts 1phys			impres	sion		p	atient rate				Fun	ctional	Assess	smen	it Stag	jing sc	ale	
												DOTES/						Bristol	ADL 9	scale									
												CO		vestiga				AD			investig	ation							
														/caregi	/er				ADL/	'quali	ty								
														GBS															
			"Efficacy and tolerabilit		(0			0							0	0												
	Burns, A., M	1999	"The effects of donepe	Demer					0							0	0)											
			"Sustained cognitive in															0					0	0					
donepezil	Greenberg, §	2000	"Donepezil therapy in	Arch M		C	0						0																
			"Patient populations in		(0																							
donepezil	Rogers, S. L.	1998	"A 24-week, double-bl	Neuro	(0			0								0)											
donepezil	Wilkinson, D	2003	"Donepezil in vascular	Neuro	(0			0								0												
			"A 1-year, randomized		(0				0															0				
<u> </u>			"Galantamine provides																										
<u> </u>			"Management of patie		0														C	0					0				
<u> </u>			"Galantamine, a cholin					0	D											0	0				0				
<u> </u>	-		"An open-label extens																	0					0				
<u> </u>			"Long-term outcomes																		0				0				
<u> </u>			"Galantamine demonst																										
galantamine			"Galantamine: a rando								0																		
memantine	Ditzler, K.	1991	"Efficacy and tolerabilit	Arznei	6	0	0				0								0										
memantine	Gortelmeyer,	1992	"Memantine in the trea	Arznei														0											
memantine	Orgogozo, J	2002	"Efficacy and safety of	Stroke		0						0	0	0															
memantine	Reisberg, B.,	2003	"Memantine in modera	N Eng		0				0					0						C	0 (0				
memantine	Tariot, P. N.,	2004	"Memantine treatment	JAMA				(C																0	0			
memantine	Winblad, B. a	1999	"Memantine in severe	Int J G																						C)		
rivastigmine	Farlow, M., F	2000	"A 52-week study of th	Eur Ne																									
rivastigmine	Kumar, V., R	2000	"An efficacy and safety	Eur J I	1	0				0																			
rivastigmine	Rosler, M., R	1999	"Efficacy and safety of	BMJ 3	(0				0																			

Conclusion

- Soaring R&D expenditure in CNS Drug development, and in geriatric population
- Most studies use 4 category assessments
 - Cognition
 - Global impression
 - Function
 - BPSD
 - QOL / Burden)